Consider the unsteady one dimensional heat conduction without any source term.
\begin{equation} \frac{\partial (\rho C_{p} T)}{\partial t} = \frac{\partial}{\partial x} (K \frac{\partial T}{\partial x}) \end{equation}
We shall integrate LHS and RHS before discretisation.
\begin{equation} \int_{w}^{e}\int_{t}^{t+\Delta t} \frac{\partial (\rho C_{p} T)}{\partial t}dt.dx =\int_{t}^{t+\Delta t} \int_{w}^{e} \frac{\partial}{\partial x} (K \frac{\partial T}{\partial x})dt.dx \end{equation}
In LHS, the time integration carries out first.
\begin{split} LHS &= \int_{w}^{e} \Big\lbrack \int_{t}^{t+\Delta t} \frac{\partial (\rho C_{p} T)}{\partial t}dt\Big\rbrack dx \\ & = \int_{w}^{e} \Big\lbrack (\rho C_{p} T)^{t+\Delta t} - (\rho C_{p} T)^{t} \Big\rbrack dx\\ \end{split}
notating
\begin{equation} \begin{split} LHS & = \int_{w}^{e} \Big\lbrack (\rho C_{p} T)^{t+\Delta t} - (\rho C_{p} T)^{t} \Big\rbrack dx \\ & = \rho C_{p} (T^{t+\Delta t} - T^{t})\Delta x\\ \end{split} \end{equation}
\begin{split} RHS &= \int_{t}^{t+\Delta t} \Big\lbrack \int_{w}^{e} \frac{\partial}{\partial x} (K \frac{\partial T}{\partial x})dx \Big\rbrack dt \\ & = \int_{t}^{t+\Delta t} \Big\lbrack (K \frac{\partial T}{\partial x})_{e} - (K \frac{\partial T}{\partial x})_{w} \Big\rbrack dt\\ & = \int_{t}^{t+\Delta t} \Big\lbrack K_{e} \frac{ T_{E} - T_{P} }{\delta x_{e}} - K_{w} \frac{ T_{P} - T_{W} }{\delta x_{w}} \Big\rbrack dt\\ \end{split}
Now, in order to carryout the space integration, we need to have an assumption for variation of T with respect to time t. Assuming the “piecewise linear” variation in time, i.e., weighted composition of previous and current time where f is the weight.
\int_{t}^{t+\Delta t} T dt = \Big[(1-f)T^{t} - f T^{t+\Delta t} \Big]\Delta t
\begin{split} RHS &= \int_{t}^{t+\Delta t} \Big\lbrack K_{e} \frac{ T_{E} - T_{P} }{\delta x_{e}} - K_{w} \frac{ T_{P} - T_{W} }{\delta x_{w}} \Big\rbrack dt\\ &= \Big [\frac{K_{e}}{\delta x_{e}} \Big ([ (1-f)T_{E}^{t} - f T_{E}^{t+\Delta t} ] - [ (1-f)T_{P}^{t} - f T_{P}^{t+\Delta t} ] \Big ) \\ &- \frac{K_{w}}{\delta x_{w}} \Big ([ (1-f)T_{P}^{t} - f T_{P}^{t+\Delta t} ] - [ (1-f)T_{W}^{t} - f T_{W}^{t+\Delta t} ] \Big ) \Big ] \Delta t\\ \end{split}
denoting T^{t} as T^{o} and T^{t+\Delta t} as T .
\begin{equation} \begin{split} RHS &= \Big [\frac{K_{e}}{\delta x_{e}} \Big ([ (1-f)T_{E}^{o} - f T_{E} ] - [ (1-f)T_{P}^{o} - f T_{P} ] \Big ) \\ &- \frac{K_{w}}{\delta x_{w}} \Big ([ (1-f)T_{P}^{o} - f T_{P} ] - [ (1-f)T_{W}^{o} - f T_{W} ] \Big ) \Big ] \Delta t\\ \end{split} \end{equation}
\begin{equation} \begin{split} LHS & = \rho C_{p} (T_{P} - T_{P}^{o})\Delta x\\ \end{split} \end{equation}
Equating LHS and RHS, and writing in the standard discretisation form,
a_{P}T_{P} = a_{E}T_{E}+a_{W}T_{W}+a_{P}^{o}T_{P}^{o}+b\\
where
a_{E} = f\frac{K_{e}}{\delta x_{e}} , \text{ } a_{W} = f\frac{K_{w}}{\delta x_{w}} , \text{ } a_{P} = a_{E} +a_{W}+\rho C_{p} \frac{\Delta x}{\Delta t}\\ a_{P}^{o} = \rho C_{p} \frac{\Delta x}{\Delta t} -(1- f) \frac{K_{e}}{\delta x_{e}}-(1- f) \frac{K_{w}}{\delta x_{w}}\\ b =(1-f) \frac{K_{e}}{\delta x_{e}} T_{E}^{o} +(1-f) \frac{K_{w}}{\delta x_{w}} T_{W}^{o}
f = \begin{cases} 0 &\text{Explicit scheme } \\ 0.5 &\text{Crank-Nicholson scheme } \\ 1 &\text{Fully implicit scheme } \\ \end{cases}
Condition for stability for isotropic uniform grid, based on setting the requirement of positive value for a_{P}^{o}
\frac{\alpha \Delta t}{(\Delta x)^{2}} \ge \begin{cases} \frac{1}{2} &\text{Explicit scheme } \\ 1 &\text{Crank-Nicholson scheme } \\ 0 &\text{Fully implicit scheme } \\ \end{cases}